Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Giovannoni, Stephen J; Weedon, James (Ed.)ABSTRACT Rapid climate change in the Arctic is altering microbial structure and function, with important consequences for the global ecosystem. Emerging evidence suggests organisms in higher trophic levels may also influence microbial communities, but whether warming alters these effects is unclear. Wolf spiders are dominant Arctic predators whose densities are expected to increase with warming. These predators have temperature-dependent effects on decomposition via their consumption of fungal-feeding detritivores, suggesting they may indirectly affect the microbial structure as well. To address this, we used a fully factorial mesocosm experiment to test the effects of wolf spider density and warming on litter microbial structure in Arctic tundra. We deployed replicate litter bags at the surface and belowground in the organic soil profile and analyzed the litter for bacterial and fungal community structure, mass loss, and nutrient characteristics after 2 and 14 months. We found there were significant interactive effects of wolf spider density and warming on fungal but not bacterial communities. Specifically, higher wolf spider densities caused greater fungal diversity under ambient temperature but lower fungal diversity under warming at the soil surface. We also observed interactive treatment effects on fungal composition belowground. Wolf spider density influenced surface bacterial composition, but the effects did not change with warming. These findings suggest a widespread predator can have indirect, cascading effects on litter microbes and that effects on fungi specifically shift under future expected levels of warming. Overall, our study highlights that trophic interactions may play important, albeit overlooked, roles in driving microbial responses to warming in Arctic terrestrial ecosystems. IMPORTANCEThe Arctic contains nearly half of the global pool of soil organic carbon and is one of the fastest warming regions on the planet. Accelerated decomposition of soil organic carbon due to warming could cause positive feedbacks to climate change through increased greenhouse gas emissions; thus, changes in ecological dynamics in this region are of global relevance. Microbial structure is an important driver of decomposition and is affected by both abiotic and biotic conditions. Yet how activities of soil-dwelling organisms in higher trophic levels influence microbial structure and function is unclear. In this study, we demonstrate that predicted changes in abundances of a dominant predator and warming interactively affect the structure of litter-dwelling fungal communities in the Arctic. These findings suggest predators may have widespread, indirect cascading effects on microbial communities, which could influence ecosystem responses to future climate change.more » « less
-
Abstract The grassland biome is an important sink for atmospheric methane (CH4), a major greenhouse gas. There is considerable uncertainty in the grassland CH4sink capacity due to diverse environmental gradients in which grasslands occur, and many environmental conditions can affect abiotic (e.g., CH4diffusivity into soils) and biotic (e.g., methanotrophy) factors that determine spatial and temporal CH4dynamics. We investigated the relative importance of a soil's gas diffusivity versus net methanotroph activity in 22 field plots in seven sites distributed across the US Great Plains by making approximately biweekly measures during the growing seasons over 3 years. We quantified net methanotroph activity and diffusivity by using an approach combining a gas tracer, chamber headspace measurements, and a mathematical model. At each plot, we also measured environmental characteristics, including water‐filled pore space (WFPS), soil temperature, and inorganic nitrogen contents, and examined the relative importance of these for controlling diffusivity and net methanotroph activity. At most of the plots across the seven sites, CH4uptake rates were consistently greatest when WFPS was intermediate at the plot level. Our results show that variation in net methanotroph activity was more important than diffusivity in explaining temporal variations in net CH4uptake, but the two factors were equally important for driving spatial variation across the seven sites. WFPS was a significant predictor for diffusivity only in plots with sandy soils. WFPS was the most important control on net methanotroph activity, with net methanotroph activity showing a parabolic response to WFPS (concave down), and the shape of this response differed significantly among sites. Moreover, we found that the WFPS level at peak net methanotroph activity was strongly correlated with the mean annual precipitation of the site. These results suggest that the local precipitation regime determines unique sensitivity of CH4uptake rates to soil moisture. Our findings indicate that grassland CH4uptake may be predicted using local soil water conditions. More variable soil moisture, potentially induced through predicted future extremes of rainfall and drought, could reduce grassland CH4sink capacity in the future.more » « less
An official website of the United States government
